磁控溅射的基本原理是利用 Ar一02混合气体中的等离子体在电场和交变磁场的作用下,被加速的高能粒子轰击靶材表面,能量交换后,靶材表面的原子脱离原晶格而逸出,转移到基体表面而成膜。
溅射镀膜是指在真空室中,利用荷能粒子轰击靶材表面,通过粒子动量传递打出靶材中的原子及其它粒子,并使其沉淀在基体上形成薄膜的技术。溅射镀膜技术具有可实现大面积快速沉积,薄膜与基体结合力好,溅射密度高、针孔少,膜层可控性和重复性好等优点,而且任何物质都可以进行溅射,因而近年来发展迅速,应用广泛。
溅射镀膜技术的应用
1. 制备薄膜磁头的耐磨损氧化膜
硬盘磁头进行读写操作时与硬盘表面产生滑动摩擦,为了减小摩擦力及提高磁头寿命,目前磁头正向薄膜化方向发展。
绝缘膜和保护膜(即AL 2 O 3 、SiO 2 氧化物薄膜)是薄膜磁头主要构成成份。对薄膜磁头的耐磨损膜的要求是耐冲击性好,耐磨性好,有适当的可加工性以及加工变形小,通常采用反应溅射法制备该种薄膜。为了防止基片升温过高,溅射镀膜过程中要对基片进行冷却。
2. 制备硬质薄膜
目前广泛使用的硬化膜是水溶液电镀铬。电镀会使钢发生氢脆,而且电镀速度慢,造成环境污染。如果采用金属Cr靶,在N 2 气氛中进行非平衡磁控溅射镀膜,可以在工件上镀覆Cr、CrN X 等镀层,代替水溶液电镀用于旋转轴和其它运动部件。
3. 制备切削刀具和模具的超硬膜
采用普通化学气相沉积技术制备TiN、TiC等超硬镀层,温度要在1000 ℃ 左右,这已经超过了高速钢的回火温度,对于硬质合金来说还可能使镀层晶粒长大。而采用对向靶溅射沉积单相TiN薄膜,溅射时间只需10~15min,基片温度不超过150 ℃,得到的 TiN薄膜硬度最高可达HV3800。利用非平衡磁控溅射法制备的TiN镀膜,通过膜层硬度和临界载荷实验以及摩擦实验,表明膜层硬度已经达到和超过其它离子镀膜的效果。
4. 制备固体润滑膜
固体润滑膜如MoS 2 薄膜已成功应用于真空工业设备、原子能设备以及航空航天领域,对于工作在高温环境的机械设备也是毕不可少的。虽然MoS 2 可用化学反应镀膜法制备,但溅射镀膜发得到的MoS 2 薄膜致密性好,膜基附着力大,添加Au(5wt%)的MoS 2 膜,其致密性和附着性更好,摩擦系数更小。
5. 制备光学薄膜
溅射法是目前工业生成中制备光学薄膜的一种主要的工艺。长期以来,反应磁控溅射技术主要用于工具表面镀制 TiN 等超硬膜以及建筑玻璃、汽车玻璃、透明导电膜等单层或简单膜层。近年来,光通信,显示技术等方面对光学薄膜的巨大需求,刺激了将该技术用于光学薄膜工业化 生产的研究。
科研设备丨半导体材料丨高精度检测丨清洁度检测丨激光刻蚀丨光栅刻蚀丨离子刻蚀丨等离子清洗丨半导体检验丨蔡司电镜丨材料科研丨二维刻蚀丨倾角刻蚀丨3维超景深丨扫描电镜丨失效分析丨共聚焦显微镜 XML地图